Affiliation:
1. Zhejiang University
2. College of Biomedical and Instrument Science, Zhejiang University
Abstract
The diagnosis of sleep apnea syndrome (SAS) has important clinical significance for the prevention of hypertension, coronary heart disease, arrhythmias, stroke and other diseases. In this paper, a novel method for the detection of SAS based on single-lead Electrocardiogram (ECG) signal was proposed. Firstly, the R-peak points of ECG recordings were pre-detected to calculate RR interval series and ECG-derived respiratory signal (EDR). Then 40 time- and spectral-domain features were extracted and normalized. Finally, support vector machine (SVM) was employed to these features as a classifier to detect SAS events. The performance of the presented method was evaluated using the MIT-BIH Apnea-ECG database, results show that an accuracy of 95% in train sets and an accuracy of 88% in test sets are achievable.
Publisher
Trans Tech Publications, Ltd.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献