Neural Network and D-S Evidence Theory Based Condition Monitoring and Fault Diagnosis of Drilling

Author:

Wang Jiang Ping1,Lin Shun De1,Bao Ze Fu1

Affiliation:

1. Xian Shiou University

Abstract

This paper focuses on drilling fault diagnosis with the technology of information fusion based on neural network and Dempster-Shafer evidence theory. Neural network is used to process the drilling engineering data monitored from drilling on-site. The primary diagnosis results of drilling faults can be obtained by comparing the outputs of the neural network. And also the outputs of neural network are utilized to construct a basic probability assignment function (mass function) to assign a value of mass function for each type of drilling faults. The final fault diagnosis results will be achieved by using Dempster-Shafer evidence theory on decision level through further reasoning primary diagnosis results of neural network. The proposed method can in time discover the engineering data whether abnormal so that can diagnose and classify them, and will improve the accuracy of the drilling fault diagnosis.

Publisher

Trans Tech Publications, Ltd.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3