Automatic Tortuosity Classification Using Machine Learning Approach

Author:

Turior Rashmi1,Chutinantvarodom Pornthep2,Uyyanonvara Bunyarit1

Affiliation:

1. SIIT, Thamassat University, Pathumthani, Thailand

2. SIIT, Thamassat University, Thailand

Abstract

Retinopathy of Prematurity (ROP) is a vital cause of vision loss in premature infants, but early detection of its symptoms enables timely treatment and prevents blindness. Tortuosity is the major indicator of ROP that can potentially be automatically quantified. In this paper, which focuses on automatic tortuosity quantification and classification in images from infants at risk of ROP, we present a series of experiments on preprocessing, feature extraction, image feature selection and classification using nearest neighbor classifier. Fisher linear Discriminant analysis is used as a feature selection algorithm. We observe that the best feature set is a combination of two features: tortuosity as estimated based on combination of curvature of improved chain code and number of inflections and tortuosity as measured by inflection count metric. Accuracy, sensitivity and specificity are used as performance measures for the classifier. The results are validated against the judgments of expert ophthalmologists. The overall accuracy, sensitivity and specificity achieved on the best feature set are 95%, 95.65% and 96.74% respectively.

Publisher

Trans Tech Publications, Ltd.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3