A Collaborative Filtering Recommendation Algorithm Based on Product Clustering

Author:

Wang Pu1

Affiliation:

1. Zhejiang Business Technology Institute

Abstract

E-commerce recommendation system is one of the most important and the most successful application field of information intelligent technology. Recommender systems help to overcome the problem of information overload on the Internet by providing personalized recommendations to the customers. Recommendation algorithm is the core of the recommendation system. Collaborative filtering recommendation algorithm is the personalized recommendation algorithm that is used widely in e-commerce recommendation system. Collaborative filtering has been a comprehensive approach in recommendation system. But data are always sparse. This becomes the bottleneck of collaborative filtering. Collaborative filtering is regarded as one of the most successful recommender systems within the last decade, which predicts unknown ratings by analyzing the known ratings. In this paper, an electronic commerce collaborative filtering recommendation algorithm based on product clustering is given. In this approach, the clustering of product is used to search the recommendation neighbors in the clustering centers.

Publisher

Trans Tech Publications, Ltd.

Reference7 articles.

1. Panagiotis Symeonidis, Alexandros Nanopoulos, Apostolos Papadopoulos, Yannis Manolopoulos, Nearest-Biclusters Collaborative Filtering, WEBKDD (2006).

2. B. Sarwar, G. Karypis, J. Konstan and J. Riedl, Recommender systems for large-scale e-commerce: Scalableneighborhood formation using clustering, Proceedings of the Fifth International Conference on Computer andInformation Technology, (2002).

3. Xue, G., Lin, C., & Yang, Q., et al. Scalable collaborative filtering using cluster-based smoothing. In Proceedings of the ACM SIGIR Conference 2005 p.114–121.

4. D. Bridge and J. Kelleher, Experiments in sparsity reduction: Using clustering in collaborative recommenders, in Procs. of the Thirteenth Irish Conference on Artificial Intelligence and Cognitive Science, p.144–149. Springer, (2002).

5. J. Kelleher and D. Bridge. Rectree centroid: An accurate, scalable collaborative recommender. In Procs. of the Fourteenth Irish Conference on Artificial Intelligence and Cognitive Science, pages 89–94, (2003).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3