Affiliation:
1. Shanghai Fire Research Institute of Ministry of Public Security
2. Nanchang University
Abstract
The forecasting to future developments of the city fire time series is a challenging task that has been addressed by many researchers due to the importance. In this paper, a Nonlinear Auto-Regressive (NAR) prediction model is applied to forecast the city fire data based on support vector regression. The performances of the NAR prediction model in city fire forecasting are compared with the BP neural network method. The experimental results show that the proposed model performs best.
Publisher
Trans Tech Publications, Ltd.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献