Seismic Vulnerability of Existing RC Buildings and Influence of the Decoupling of the Effective Masonry Panels from the Structural Frames

Author:

de Angelis Fabio1,Cancellara Donato1

Affiliation:

1. University of Naples Federico II

Abstract

In the present work we discuss on the seismic vulnerability of reinforced concrete existing buildings. In particular we consider a reinforced concrete building originally designed for only gravitational loads and located in a zone recently defined at seismic risk. According to the Italian seismic code NTC 2008 a displacement based approach is adopted and the N2-method is considered for the nonlinear seismic analysis. In the analysis all the masonry infill panels in effective interaction with the structural frame are considered for the nonlinear modeling of the structure. The influence of the effective masonry infills on the seismic response of the structure is analyzed and it is discussed how the effect of the masonry infills irregularly located within the building can give rise to a worsening of the seismic performance of the structure. It is shown that in the present case a not uniform positioning of the masonry infills within the building can give rise to a fragile structural behavior in the collapse mechanism. Furthermore a comparative analysis is performed by considering both the structure with the effective masonry infills and the bare structural frame. For these two structures a pushover analysis is performed, the relative capacity curves are derived and it is shown that fragile collapse mechanisms can occur depending on the irregular positioning of the effective masonry infills. Accordingly it is discussed how in the present case a decoupling of the effective masonry infills from the structural frame can give rise to a smoother response of the capacity curves. For the examined case of an obsolete building with irregular positioning of the masonry panels, the choice of decoupling the effective masonry panels from the structural frame may facilitate the retrofitting strategies for the achievement of the proper safety factors at the examined limit states.

Publisher

Trans Tech Publications, Ltd.

Reference28 articles.

1. NTC 2008, Decreto Ministeriale 14/01/2008, Nuove Norme Tecniche per le Costruzioni, Gazzetta Ufficiale n. 29 del 4 febbraio 2008 - Suppl. Ordinario n. 30, Roma, (2008).

2. Oliveto G., Decanini L.D., Repair and retrofit of a six storey reinforced concrete building damaged by the earthquake in south-east Sicily on the 13th December 1990, Soil Dynamics and Earthquake Engineering, Volume 17, Issue 1, pp.57-71, (1998).

3. Fajfar, P., Capacity spectrum method based on inelastic demand spectra, Earthquake Engineering & Structural Dynamics, Vol. 28, Issue 9, pp.979-993, (1999).

4. Panagiotakos, T.B., Fardis M.N., Deformations of RC members at yielding and ultimate, ACI Structural Journal, Vol. 98, Issue 2, pp.135-148, (2001).

5. FIB 2003, Fédération Internationale du Béton: Seismic Assessment and Retrofit of Reinforced Concrete Buildings, State-of-art report prepared by Task Group 7. 1, FIB Bulletin n. 24, (2003).

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3