Experimental Study on Damage Mechanism of Nano-Ceramic Surface/Subsurface under Ultrasonic Vibration Aided Grinding

Author:

Zhao Bo1,Zhao Chong Yang1,Du Bao Yu1

Affiliation:

1. Henan Polytechnic University

Abstract

In this paper, surface/subsurface damage mechanism of engineering ceramics under ultrasonic vibration assisted grinding was studied by experiment based on its theoretical study. The study shows: under the same grinding conditions, ultrasonic grinding can realize plastic grinding and low crack damage surface grinding in a larger range of cutting depth than that under common grinding, that can improve processing efficiency and reduce workpiece grinding damage. Meanwhile, ultrasonic vibration grinding process can be seen as periodical loading and unloading process of abrasive on the workpiece. Crack is formed and extends initially on loading, the speed of crack expansion slows down, and its direction offsets to workpiece free surface on unloading as the change of ultrasonic force direction. So cracks can not expand to material deep and shallow sub-surface cracks are left in workpiece sub-surface layer. This phenomenon may be one of the main reasons that subsurface damage is reduced on ultrasonic grinding.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3