Mechanical Relaxation Studies of Sub-Rouse Modes in Amorphous Polymers

Author:

Wu Xue Bang1,Wang Hua Guang1,Liu Chang Song1,Zhu Zhen Gang1

Affiliation:

1. Chinese Academy of Sciences

Abstract

Mechanical spectroscopy is a powerful tool for the investigation of molecular dynamics of amorphous polymers over a large temperature range and frequency scale. In this work, by using high precision shear mechanical spectroscopy tool, we have investigated the segmental dynamics from local segmental relaxation to sub-Rouse modes in a series of amorphous polymers. We have demonstrated the existence of sub-Rouse modes slower than the local segmental motion in amorphous polymers. The sub-Rouse modes exhibit a similar change of dynamics at the same temperature TB ~1.2 Tg, as the local segmental relaxation through the temperature dependence of relaxation time and relaxation strength. Furthermore, the crossover relaxation time of the sub-Rouse modes at TB is almost the same for all the polymers investigated, i.e. τα'(TB) = 10-1±0.5 s, which is independent of molecular weight and molecular structure. This remarkable finding indicates that solely the time scale of the relaxation determines the change in dynamics of the sub-Rouse modes. According to the coupling model, the crossover is suggested to be caused by the onset of strong intermolecular cooperativity below TB. Hence the results suggest that the sub-Rouse modes and their properties are generally found in amorphous polymers by mechanical spectroscopy, and reveal the cooperative nature of the sub-Rouse modes.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3