Special Microstructures and Twin Features in Ti50Ni50-X(Pd,Au)X at Small Hysteresis

Author:

Delville Remi1,Shi Hui1,James Richard D.2,Schryvers Dominique1

Affiliation:

1. University of Antwerp

2. Department of Aerospace Engineering and Mechanics

Abstract

The breaking of symmetry due to atomic displacements in the austenite-martensite phase transformation generally leads to their crystallographic incompatibility. Energy minimizing accommodation mechanisms such as martensite twinning have been recently shown to be a source of hysteresis and irreversible plastic deformation. Compatibility between the two phases can however be achieved by carefully tuning lattice parameters through composition change. A dramatic drop in hysteresis and novel microstructures such as a lowering of the amount of twin lamella are then observed. Related theoretical and simulation works also support the existence of such microstructures including peculiar self-accommodating configurations at near-compatibility. We present the transmission electron microscopy (TEM) study of these novel microstructures for the alloy systems Ti50Ni50-xPdxand Ti50Ni50-xAuxwhere the composition was systemically tuned to approach perfect compatibility. High resolution imaging of the interface between austenite and martensite supplies evidences of compatibility at the atomic level.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3