Affiliation:
1. Pusan National University
2. Dong-A University
3. Colorado School of Mines
Abstract
High-temperature oxidation behaviors of Ti-Al-Si-N and Ti-Al-N films were comparatively investigated in this work. Two kinds of Ti0.75Al0.25N and Ti0.69Al0.23Si0.08N films were deposited on WC-Co substrates by a DC magnetron sputtering method using separate Ti3Al(99.9%) and Si(99.99%) targets in a gaseous mixture of Ar and N2. Si addition of 8 at.% into Ti-Al-N film modified its microstructure to a fine composite comprising, Ti-Al-N crystallites and amorphous Si3N4, and to a smoother surface morphology. While the solid solution Ti0.75Al0.25N film had superior oxidation resistance up to around 700, the composite Ti-Al-Si-N film showed further enhanced oxidation resistance. Both Al2O3 and SiO2 layers played roles as a barrier against oxygen diffusion for the quaternary Ti-Al-Si-N film, whereas only the Al2O3 oxide layer formed at surface did a role for the Ti-Al-N film. Oxidation behavior and mechanical stability of the films after oxidation were compared between two films using instrumental analyses such as XRD, GDOES, XPS, and scratch test.
Publisher
Trans Tech Publications, Ltd.
Subject
Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献