Structural Stability and Phase Transitions in f-Electron Based Systems

Author:

Chandra Shekar N.V.1,Sahu P.C.1,Sanjay Kumar N.R.1,Sekar M.1,Subramanian N.1,Kathirvel V.1,Chandra Sharat1,Rajagopalan M.2

Affiliation:

1. Indira Gandhi Centre for Atomic Research

2. Anna University

Abstract

The study of high pressure structural stability and equation of state of f-electron based binary intermetallics of type AXBY, where A belongs to either rare earth of actinide atom and B any other d or p block metal, is interesting from both basic as well as applied research point of view. These studies have lead to some general systematic patterns emerging. Firstly, the AB type of compounds in general stabilizes in NaCl type cubic structure and transform to CsCl type under the action of pressure. The AB2 type of compounds is very interesting and under pressure undergoes a series of structural transitions. However, the AB3 type systems are highly stable and do not show structural transitions under pressure up to as high as 30 GPa. We found that it is interesting and enlightening to explore: (i) the reason for their stability by examining the electronic structure and (ii) look for general trends in the structural transformations. In this paper, we have presented some of our studies on f-electron based intermetallics (f-IMCs), elaborate on the trends seen in the structural transitions and correlate the results obtained with the electronic structure calculations.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Compressibility study of UIr2;Intermetallics;2017-04

2. Structural stability of URh3 at high pressure;Physica B: Condensed Matter;2013-03

3. Electronic structure of UAl2 and UGa2;Indian Journal of Physics;2012-07-31

4. Phase Transitions and Structural Stability of Binary Uranium Intermetallics Under High Pressure: A Review;Proceedings of the National Academy of Sciences, India Section A: Physical Sciences;2012-06-01

5. CORRELATION BETWEEN STRUCTURAL STABILITY AND ELECTRONIC STRUCTURE OF UGa3 UP TO 30 GPa;International Journal of Modern Physics B;2011-02-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3