The Effect of High Temperature on the Degradation of Heat-Resistant and High-Temperature Alloys

Author:

Błachnio Józef1

Affiliation:

1. Białystok Technical University

Abstract

Heat-resistant and high-temperature materials are used to manufacture components, devices, and systems operated at high temperatures, i.e. under severe heat loads. Gas turbines used in the power industry, the traction, marine, and aircraft engines, the aerospace technology, etc. are good examples of such systems. Generally, as the temperature increases, the mechanical strength of materials decreases. While making such materials, there is a tendency to keep possibly low thermal weakening. In the course of operating gas turbines, various kinds of failures/defects/ damages may occur to components thereof, in particular, to blades. Predominating failures/damages are those attributable to the material overheating and thermal fatigue, all of them resulting in the loss of mechanical strength. The paper has been intended to present findings on changes in the microstructure of blades made of nickel-base alloy due to high temperature. The material gets overheated, which results in the deterioration of the microstructure’s condition. The material being in such condition presents low high-temperature creep resistance. Any component, within which such an effect occurs, is exposed to a failure/damage usually resulting in the malfunctioning of the turbine, and sometimes (as with aero-engines) in a fatal accident. Failures/damages of this kind always need major repairs, which are very expensive.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3