Forming of Biocompatible Materials in the Semi-Solid State

Author:

Kertész Levente1,Liewald Mathias1

Affiliation:

1. University of Stuttgart

Abstract

Semi-solid processing of materials provides advantages of both forging and casting. Experiments with high-melting and biocompatible alloys aiming at a “near-net-shape” production technology recently have been conducted. Advanced trials showed, that processing of such materials by means of semi-solid forming deliver a huge potential for feasible workpiece shapes and drastically reduces machining time and subsequent surface treatment efforts. In contrast to semi-solid forming of aluminium alloys at relatively low temperature levels any processing of high-melting point alloys in the semi-solid state is much more challenging due to higher forming temperature. Commonly used tool materials provoke high wear rates due to wetting, bonding and melting processes which finally result in a very short tool life time. Thus, more apt materials and composites for forming tools and dies which can withstand corrosion, wear, tear and extreme changes in temperatures have to be found. The development of new design concepts for long-living close-to-production tools based on such new materials will be a future goal.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3