Structure and Anelasticity of Fe-Ge Alloys

Author:

Golovin Igor S.1,Ivleva Tatiana V.2,Jäger S.3,Jencus P.3,Neuhäuser Hartmut3,Redfern S.A.T.4,Siemers C.3

Affiliation:

1. National University of Science and Technology "MISIS" (NUST MISiS)

2. Tula State University

3. Technische Universität Braunschweig

4. Centre for Ferroics, University of Cambridge

Abstract

Several ternary Fe – Ge - C alloys with Ge contents ranging between 3 and 27 at. % have been studied. The structure, anelastic, thermodynamic and kinetic phenomena in Fe - 3, - 12, - 19/21 and – 27 Ge have been examined by X-ray diffraction (XRD), heat flow (DSC), vibrating sample magnetometry (VSM), optical-light and scanning electron microscopy, and internal friction (IF) methods. The Fe - 3Ge and Fe - 12Ge alloys form b.c.c. solid solutions. A Snoek-type internal friction (P1) peak is recorded in the Fe - 3Ge alloy with parameters similar to those for α-Fe: Н = 0.86 eV, Δ = 0.015, β = 0.72 and τ0 = 2 × 10-15 s, showing that Ge atoms have little influence on the diffusivity of carbon in iron. The Fe - 12Ge alloy, with a Curie point around 1008 K, has several IF peaks: a broad Snoek-type (P1 and P2), the P3 peak caused by structural changes in as quenched specimens during annealing, and a P4 (Zener) peak at higher temperature (Tm ≈ 773 K at f = 2 Hz, β ≈ 0.7). The Fe - 21Ge alloy has bcc or bcc plus hexagonal structure depending on heat treatment. The structure of the Fe3Ge-type alloy (Fe - 27Ge) consists mainly of hexagonal phases, i.e. hexagonal ε (D019), β (B81), and cubic ε′ (L12), and exhibits corresponding magnetic ordering transitions below 873 K which are not well-reflected in the common Fe - Ge phase diagrams. In particular a high stability of the hexagonal ε phase at room temperature is noted. A broad internal friction relaxation peak with Δ = 0.0036, H ≈ 1.8 eV and τ 0 = 2 ⋅ 10-17 s is found in Fe – 27 Ge and is classified as a double Zener peak in the ε and β two-phase mixture.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3