Mechatronics Systems Supported by Vision Techniques

Author:

Kohut Piotr1

Affiliation:

1. AGH University of Science and Technology

Abstract

In the paper an application of vision methods and algorithms in various domains that contribute to mechatronics is presented. Regarding mechatronics devices and machines as robots, a vision system employed for a testing station simulating an industrial assembly line is discussed. Some numerical aspects concerning image pre-processing, analysis and geometrical transformations commonly used in robotics were introduced. To accomplish an effective investigation, the developed methodology and algorithms were implemented and verified on an experimental setup composed of two industrial robots and automation devices cooperating with two various vision systems. In the case of underwater robots for tank inspection, image pre-processing and analysis algorithms for the robot's position estimation, an image scale calculation and wall crack detection were investigated. An active vibration control system is treated as a mechatronic device which contains mechanical parts, electronics and software. In this example, a visual servoing architecture based on image features for controlling an active vibration control system was examined. For an effective investigation and synthesis of visual servoing algorithms, a MATLAB/Simulink/dSPACE hardware–software environment was employed. A vision system was used to analyze vibration amplitude of the vibro-isolation mass of the active suspension system and to provide a feedback control signal. The connection of 3D vision techniques with modal analysis was shown. Within the confines of the project a methodology for amplitude of vibration measurement and a software tool for modal analysis realization based on visual data were developed. The 3D measurements and structure of the construction were obtained by application and development of passive 3-D vision techniques. From this area, ‘structure from motion’ techniques were developed. In the experimental research, a mechatronic test stand was designed and manufactured enabling automatic two-axis control of a camera. A frame structure was built, in which a guiding-rail system was mounted enabling straight-line motion of a camera. Additionally, a system realizing rotational motion of a camera was built in. To control the experiment stand, software was created enabling the combination of the hardware-software part of the stand with the software part of a vision system. A tool was developed for the purpose of modal analysis and estimation of the quantities characterizing dynamic properties of the structure based on vision signals. As a conclusion, the presented, implemented and tested vision methods in various hardware-software programming platforms are discussed

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3