Abstract
An accurate forecasting method for solar power generation of the photovoltaic (PV) system is urgent needed under the relevant issues associated with the high penetration of solar power in the electricity system. This paper presents a comparison of three forecasting approaches on short term solar power generation of PV system. Three forecasting methods, namely, persistence method, back propagation neural network method, and radial basis function (RBF) neural network method, are investigated. To demonstrate the performance of three methods, the methods are tested on the practical information of solar power generation of a PV system. The performance is evaluated based on two indexes, namely, maximum absolute percent error and mean absolute percent error.
Publisher
Trans Tech Publications, Ltd.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献