A Study of Multi-Step Overfall Flows by Computational Fluid Dynamics

Author:

Tang Jyh Haw1,Sun Ming Kuan1,Chen Ying1

Affiliation:

1. Chung Yuan Christian University

Abstract

This paper proposes the least-squares finite element method (LSFEM) for simulating the free surface flows in multi-step free overfalls. Motion of the free surface flows is represented with two-phased surface profiles by solving the Navier-Stokes equations. The fluid is considered to be incompressible and the dynamic and kinematic boundary conditions of free surface are described in an Eulerian coordinate system. In this simulation, the volume of fluid (VOF) method and continuous stress force (CSF) models in association of color function are incorporated for the determination of the interface between water and air. The simulation results from the LSFEM model are carefully verified for the unit-step free overfall case. The quantitative comparisons in terms of the parameters such as different inflow rates, reattached length, water height after the fall and critical depth with previous numerical results or experimental measurements are shown to be in good agreement. In order to understand more about the complicate free surface profile of a dual-step free overfall, the LSFEM model is simulated for different inflow rates. In comparison with the available experimental data, it is shown that the LSFEM can effectively simulate the multi-step free overfall flow phenomena. Our study presents some regression formula for the dual-step free overfall, it is hoped that these formula will be helpful for the engineering designs and applications.

Publisher

Trans Tech Publications, Ltd.

Reference13 articles.

1. H. Chanson, The hydraulics of stepped chutes and spillways, Lisse, The Netherlands, (2002).

2. F.M. Henderson, Open Channel Flow, Macmillan Pub. Co., Inc., NewYork, (1966).

3. H. Rouse, Discharge characteristics of the free overfall, Civil Engineering, ASCE, (1936), 257-260.

4. M.A. Gill, Hydraulics of Rectangular Vertical Drop Structures, IAHR 17, (1979), 289-302.

5. M.H. Diskin, End depth at a drop in trapezoidal channels, J. Hydraulic Engineering, ASCE 87 (4), (1961), 911–932.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3