Preparation and Investigation of Cu Doped(Pr0.5Nd0.5)0.7Ca0.3CrO3–δ Ceramic Interconnect Materials

Author:

Gu Qing Wen1,Chen Yong Hong1,Tian Dong1,Lu Xiao Yong1,Ding Yan Zhi1,Lin Bin1

Affiliation:

1. Huainan Normal University

Abstract

(Pr0.5Nd0.5)0.7Ca0.3Cr1-xCuxO3–δ(PNCCCx x=0, 0.5, 0.1, 0.15,0.2 ) interconnect material and electrolyte powders of Sm0.2Ce0.8O1.9 (SDC) were synthesized by citric acid nitrates self-propagating combustion methodThe phase and microstructure of the sintering samples were investigated by X-ray diffraction and scanning electron microscope, respectively. The electrical conductivity of the samples were measured by four-probe technique. The results indicated that there is no new-phase were detected after co-firing between Cu-doping PNCC and SDC at 1350°C for 5 h. In air or H2 atmosphere, the conductivity of the sintering ceramics increasing with temperature, as well as the Cu-doped contents. At 800°C, the conductivity for PNCCC0.05 reached 37.54S/cm in air, and the maximum of PNCCC/SDC reached 44.52 S/cm in air 30.68 S/cm in H2, respectively. The average thermal expansion coefficient of the series ceramics is between10.4×10-6 K-1 to 10.8×10-6K-1 at the RT-1000°C, which is close to that of the SDC electrolyte. Our results indicate that the PNCCC compounds is a very promising interconnect material for intermediate solid oxide fuel cells.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3