Visco-Elastic-Plastic Constitutive Model for A7N01-T6 Alloy Welding and Analytical Solutions with Finite Element Codes

Author:

Song K.J.1,Wei Y.H.1,Dong Z.B.1,Fang K.1,Zheng W.J.1,Ma R.1

Affiliation:

1. Harbin Institute of Technology

Abstract

This paper has established a viscoelasticplastic constitutive model for A7N01T6 alloy welding, which is temperature and deformation history dependent. The model uses elasticmixed hardening plastic and creep equation to describe the strain hardening at low temperatures and strain softening at high temperatures, respectively. Then it is applied for finite element numerical simulation of the welding process. By comparison with the conventional temperature dependent elasticperfectly plastic model, the overall longitudinal residual compressive plastic strain and the maximum deformation of welding sheet are larger. This is because that the plastic strain is mostly produced in high temperature range. Strain softening has great influence on the evolution of plastic strain. The compressive plastic strain during heating is larger than the tensile plastic strain during cooling. Strain hardening effect on welding residual strain and stress is almost negligible. Using the established constitutive model, welding residual stress and strain are in good agreement with the theoretical results.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3