Blind Source Separation of Noisy Mixed Speech Signals

Author:

Li Hui Ya1,Shi Jian Ying1,Men Jin Xi2

Affiliation:

1. Hebei University

2. Department of Radio Navigation 95866 PLA Troops

Abstract

In this paper, a new method for blind source separation of the noisy mixed speech signals is introduced. Firstly, the adaptive spectral subtraction is adopted to eliminate noise of noisy mixed speech signals. Secondly, the FASTICA algorithm is used to separate denoised mixed speech signals .Finally, wavelet transform is applied to remove the residual noise, and then the estimation of each speech source signal can be got.

Publisher

Trans Tech Publications, Ltd.

Reference11 articles.

1. S. Haykin, Zhe Chen. The cocktail party problem: Neural Computation. Vol. 17(9), p.1875–1902, (2005).

2. H. Le Borgne, A, Guérin-Dugué, A. Antoniadis. Representation of images for classification with independent features: Pattern Recognition Letters. Vol. 25(2), p.141–154, (2004).

3. W. Wang , J. A. Chambers, S. Sanei. A novel hybrid approach to the permutation problem of frequency domain bind source separation: ICA 2004 LNCS 3195, p.532–539, (2004).

4. Yau, R. Macroeconomic forecasting with independent component analysis: Econometric Society 2004 Far Eastern Meetings, Econometric Society. Vol. (741), (2004).

5. A. Hyvärinen , E. Oja, A fast fixed-point algorithm for independent component analysis: Neural computation, Vol. 9(7), pp.1483-1492, (1997).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3