Affiliation:
1. University of Science and Technology
2. University of Science and Technology LiaoNing
Abstract
The paper mainly studied the gas forecasting in gas-consuming rush hour and long-term load forecasting.The paper analyzed the factors influencing the volume of gas forecasting in rush hour and forecast the volume of gas in rush hour using fuzzy method and RBF neural network. In long term city gas load forecasting, there are some characters such as longer time and uncertain demand increasing. A method is proposed to weakening the original data by using buffer operator before use GM(1,1)model. It indicated that the result acquired by these methods was satisfied with the requirement of engineering, and it was helpful to dispatchers.
Publisher
Trans Tech Publications, Ltd.