Agricultural Information Service Quality Evaluation Algorithm Based on Genetic Algorithm, BP Neural Network and Multiple Regressions

Author:

Chen Cheng1,Wu Hua Rui1

Affiliation:

1. Beijing Academy of Agriculture and Forestry Sciences

Abstract

Information service objects in agriculture relatively have a complex demand due to agricultural regional and seasonal. The construction of information service quality evaluation model contributes to analyze the influencing factors that influence the quality of information service, proving guidance for agricultural information service. Combined with genetic Algorithm, BP neural network and multiple regression, a hybrid BP network based on the integration of BP Network and multiple regression models is proposed, and the initial weights of hybrid BP network is optimized by hybrid genetic algorithm, effectively avoid the flaws when these methods used separately. Proved by the experiment, information service quality evaluation model constructed by a hybrid BP network based on the optimization of genetic Algorithm has a good accuracy and generalization ability, the mean error within 5%.

Publisher

Trans Tech Publications, Ltd.

Reference10 articles.

1. Yurong XU, James Ford, Eric Becker, etc. A BP Neural Network Improvement to Hop-counting for Localization in Wireless Sensor Networks [J]. Studies in Computational Intelligence, 2009, 166: 11-23.

2. Lixin TIAN, Linlin GAO, and Peilin XU. The Evolutional Prediction Model of Carbon Emissions in China Based on BP Neural Network [J]. International Journal of Nonlinear Science, 2010, 10(2): 131-140.

3. Huawang SHI, and Yong DENG. Application of An Improved Genetic Algorithms in Artificial Neural Networks[C]. Proceedings of the International Symposium on Information Processing, 2009: 263-266.

4. Zhiyong LI, and Hua JI. Machining Accuracy Prediction of Aero-engine Blade in Electrochemical Machining Based on BP Neural Network[C]. Proceedings of the 2009 International Workshop on Information Security and Application, 2009: 244-247.

5. Hongwei SUN, Jiancheng FANG , and Jianli LI. Temperature Errors Modeling for Micro Inertial Measurement Unit Using Multiple Regression Method[C]. Proceedings of the International Symposium on Intelligent Information Systems and Applications, 2009: 411-415.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3