Forming Process and Mechanical Properties of Fiber Reinforced Polymer Concrete for Elementary Machine Parts

Author:

Bai Wen Feng1,Yin Peng1,Yan Shou Cheng1

Affiliation:

1. Huanghuai University

Abstract

For the good vibration alleviating properties, polymer concrete (PC) has attracted much attention in the field of elementary machine components. In order to get more excellent mechanical properties, the forming process and mechanical properties of PC were concerned. In this research, glass fiber and carbon fiber were applied to improve the mechanical properties of PC. A series of PC and fiber reinforced polymer conctete (FRPC) specimens were prepared basing on the orthogonal tables for property test. Compression strength test was carried out. It is obvious that FRPC is better than PC as far as compression strength is concerned, and carbon fiber reinforced polymer concrete (CFRPC) is better than glass fiber reinforced polymer concrete (GFRPC). Trend curves about the relationship between fiber length and compression strength, as well as that between fiber dosage and compression strength were drawn. Relationship between the considered factors and compression strength is analyzed basing on the experiment results and the trend curves. Strengthening fibers would bear most of the internal stress when the specimen is faced to outer loads. Thus, FRPC has much better properties than PC. Mechanical properties of CFRPC are relatively better than that of GFRPC, for the strength of carbon fiber is better than that of glass fiber. It could be concluded that glass fiber is the proper strengthening fiber for PC considering both technical and economical factors.

Publisher

Trans Tech Publications, Ltd.

Reference19 articles.

1. X. Ai, High Speed Cutting Technology (National Defense Industry Press, Beijing, 2003).

2. W. X. Tang, X. Ai, H. Jiang and Q. H. Song, Machining Technology & Machine Tools, 6, 75 (2005).

3. C. Chen. Mechanical Engineering & Automation, 4, 146 (2007).

4. J. S. Wang, Ph. D. Thesis, Shandong University, Jinan, (1999).

5. H. Schulz, R. G. Nicklau, Int J of Cement Comp Lightweight Concrete, 5, 203, (1983).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3