Non-Destructive Inspection of Surface Integrity in Milled Turbine Blades of Inconel 738LC

Author:

Kolařík Kamil1,Pala Zdenek2,Beranek Libor2,Čapek Jiří2,Vyskocil Zdenek3,Ganev Nikolaj2

Affiliation:

1. Czech Technical University in Prague

2. CTU in Prague

3. Industry Division

Abstract

Nickel super-alloys are widely used in aerospace as material for turbine blades. Unfortunately, their machining is difficult since mechanical hardening and, consequently, extreme tool wear occur. Casting can no longer meet the requirements for precision, hence, the castings are being ground or milled. In this contribution, a quality check of the milled surface by several surface integrity parameters is proposed with respect to the surface structural inhomogeneities caused by mutual effect of plastic deformations and thermal fields during the cutting process. Castings from Inconel 738LC were milled with cutting conditions chosen by Design-Of-Experiments method and the resulting surfaces were assessed by non-destructive X-ray diffraction methods in several areas corresponding to various cutter orientation and work-piece angle. Surface integrity was described by macroscopic residual stresses, microstrains, grain sizes and phase composition. Mostly, favourable compressive surface residual stresses were observed in the cutting direction, grain sizes were distinctively smaller when the tool axis was perpendicular to the machined surface.

Publisher

Trans Tech Publications, Ltd.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3