Affiliation:
1. Shaanxi Applied Physics-Chemistry Research Institute
2. Xi’an Modern Chemistry Resezrch Institute
Abstract
Micro-electro-mechanical system (MEMS) have recently seen their field of application extended to military. This is mainly due to the fact that MEMS technologies present a great to reduce the mass, cost, power consumption, while improving the reliability, performance and smartness. Application of MEMS technology, the micropyrotechnic igniter are produced.The principle is based on the integration of lead styphnate (LTNR) material within a micropyrotechnic igniter, which is produced by MEMS with 3 by 3 micro-igniter. Each igniter contains three parts (the igniter chip, silicon chamber, lead styphnate). One import point is the optimization of the igniter process obtaining Ni-Cr bridges with about 13Ω, which is triggered by electrical power delivered to LTNR. The resistance of Ni-Cr bridges is used to sense the temperature on the LTNR which is in contact. The other one point is the optimization of silicon chamber process obtaining incorporate configuration of micropyrotechnic igniter. The ignition performance of micropyrotechnic igniter array are tested with ignition voltage less than 13V. The experimental results will deeply contribute to the micropyrotechnic system. This paper will discuss all these point.
Publisher
Trans Tech Publications, Ltd.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献