Structure and Electrochemical Properties of Li1-XNi0.5Mn0.5O2 Thin Film Using Different Raw Material by Sol-Gel Method

Author:

Liang Hai Xia1,Jiang Run Xia1,Xiao Liang1,Liu Han Xing1

Affiliation:

1. Wuhan University of Technology

Abstract

Lithium-deficient thin films Li1-xNi0.5Mn0.5O2 were synthesized by sol-gel method using metal lithium, manganese and nickel acetate salts and acetylacetonate salts as started materials, respectively. The microstructures and electrochemical performance of Li1-xNi0.5Mn0.5O2 thin films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and galvanostatic charge–discharge measurements. Lithium-deficient was due to the formation of spinel LiNi0.5Mn1.5O4 impurities. The lithium-deficient was more seriously for SB film due to contain crystal water in the acetate salts. The raw material had great influence on the morphology of the films. The SA film had better electrochemical properties than that of SB film. The first discharge capacity was about 51 μAh/cm2-μm. After 40 cycles, 76% of its discharge capacity can be retained. The metal acetylacetonate salts without crystal water are more suitable for the preparation of LiNi0.5Mn0.5O2 film by sol-gel method.

Publisher

Trans Tech Publications, Ltd.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study on the Li1-xNi0.5Mn1.5O4 for Lithium Ion Batteries: a First- Principles Theory;International Journal of Electrochemical Science;2017-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3