Study of Gas Emission Quantity Prediction Based on Chaotic Time Series

Author:

Liao Gao Hua1,Tang Yu Juan1,Dai Fang1

Affiliation:

1. Nanchang Institute of Technology

Abstract

The gas is one of the most important factors that endanger the security of the mine production. At present, the mine has only realized the real-time monitoring of gas, but not the forcasting of gas.There are some limitation of the traditional forcasting method, such as modeling subjectivism and statistical forcasting. This paper presents the gas emission forecasted method by using chaos time series forecasting,and on this basis to establish time-series forecasting models. The results show that the gas emission system has the chaotic property, using chaotic time series forecasting method to forecast the amount of gas emission is feasible, and the prediction accuracy is improved after improving some parameters algorithms in the chaotic time series prediction algorithm. The contents of this article has laid a theoretical basis for non-contact coal and gas outburst dynamic forecast, but also open up new ideas for in-depth analysis of the gas emission complex.

Publisher

Trans Tech Publications, Ltd.

Reference7 articles.

1. 凌明清 . 二维数控转台控制算法及实验研究 [ 西安 ]. 西安电子科技大学 . 2006 , 2.

2. Qiao Meiying, Qiao Jianjun, Tao Hui, Ma, Xiaoping. Mine workface gas emission time-series fractal properties[C]. 2011 International Conference on Electrical, Information Engineering and Mechatronics, EIEM 2011. Jiaozuo, Henan, China. pp: 1287-1296.

3. ZHANG Tian-jun, SU Lin, QIAO Bao-ming. The Application of Optimized GM(1, 1) in Mine Gas Flow Volume Forecast[C]. 2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring.

4. LV Jinhu, LU Anjun. Analysis and application of chaotic time series[M]. Wuhan: Wuhan University press, (2002).

5. 王家畴,位在林,宋芳 . 基于 PMAC 运动控制器的开放式数控系统研究 . 哈尔滨理工大学学报 . 2004 , 10.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3