Nonlinear Aeroelastic Panel Flutter Based on Proper Orthogonal Decomposition

Author:

Zhou Jian1,Yang Zhi Chun1

Affiliation:

1. Northwestern Polytechnical University

Abstract

It is commonly accepted that 36 in vacuo natural modes (NMS) are needed for converged, limit-cycle oscillations (LCOs) of isotropic or laminated anisotropic rectangular panels in supersonic air flow. It’s computationally costly for nonlinear aeroelastic panel response using such a large number of modes, and it also causes complexity and difficultly in designing controllers for panel flutter suppression. Based on Hamilton principle, the aeroelastic finite element motion equations of the 3-D panel are established by using the von Karman large deflection theory, first-order piston theory aerodynamics, the proper orthogonal decomposition (POD) method are adopted to construct a reduced order model of the panel, then the reduced panel flutter equations are solved in time domain using a numerical integration method. Comparing with the LCOs calculated by using 36NMS, the results obtained by using the reduced order model based on POD method (POD/ROM) show a good agreement.

Publisher

Trans Tech Publications, Ltd.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3