Predication of Sunspot Number Based on Parallel Process Neural Networks

Author:

Gao Yan1,Yu Tie Cheng1,Li Zhi1,Li Yun Jiang1,Li Xin2

Affiliation:

1. Daqing Oilfield Co.,LTD

2. Daqing Hongweijiye Automation Technology Co., Ltd

Abstract

To solve prediction of sunspot number, a parallel process neural networks model is proposed in this paper, Firstly, by dividing the whole time-varying process into several small time intervals, the process neural networks are constructed in these small time intervals, which may disperse the load of networks. Then, employing the orthogonal basis expansion in functional space, the learning algorithm of the above-mentioned model is designed. The experimental results of time series predication of sunspots show that the proposed method has great potential for complicated nonlinear time series prediction.

Publisher

Trans Tech Publications, Ltd.

Reference7 articles.

1. X.G. He, J.Z. Liang: Some Theoretical Issues on Procedure Neural Networks. Engineering Science. Vol. 2( 2000), pp.40-44.

2. X.G. He, J.Z. Liang, S.H. Xu: Learning for process neural networks and its applications. Engineering Science. Vol. 3 (2001), pp.31-35.

3. K.H. Xu, P.F. Cheng, H.J. Wen: Singular spectrum analysis and wavelet analysis on time series of sunspot. Science of Surveying and Mapping. Vol. 32 (2007), pp.35-38.

4. H.J. Zhao, J.L. Wang, W.G. Zong: Prediction of the smoothed monthly mean sunspot numbers by means of radial basis function neural networks. Chinese Journal of Geophysics. Vol. 51 (2008), pp.31-35.

5. G. Ding, S.S. Zhong: Sunspot number prediction based on process neural network with time-varying threshold functions. Acta Physica Sinica. Vol. 56 (2007), pp.1224-1230.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3