Particles Capturing and Correlation with Head Loss in a Pilot-Scale Biological Aerated Filter

Author:

Li Ting1,Dong Wen Yi1,Wang Hong Jie1,Lin Jin Nan1,Ouyang Feng1,Zhang Qian1

Affiliation:

1. Harbin Institute of Technology

Abstract

Experimental observations of particle capturing through the biological aerated filter bed indicated that air flow rate plays an important role in head loss development by influencing the suspended solids distribution along the depth of the bed as well as the morphology of the deposits. The active height for the SS removal prolonged with the increasing of the air velocity based on the mechanism of first-order kinetics. With the increasing of the superficial air velocity, the effluent SS concentration and the time need to reach the stead-states after backwash both increased. The value of the SS spike in the effluent after backwash at superficial air velocity of 27 m/hr was nearly twice as much as that of 5.4m/hr. Distribution of the deposits at higher air velocity was more uniform. Deposits at lower velocity with air flow rate produced higher head loss gradient. The headloss increased with the increasing of deposits and the increase rate was faster when the deposits exceeded higher value.

Publisher

Trans Tech Publications, Ltd.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3