A New Method of Neurofuzzy Network Based on Variable Precision Rough

Author:

Hong Peng1,Cong Wang1

Affiliation:

1. China University of Mining and Technology

Abstract

In view of the current application deficiency of neuro-fuzzy network, a new optimal method of neurofuzzy network based on variable precision rough set is presented and its application in complex systems modeling is discussed. This method takes the β classification accuracy of variable precision rough set theory as information function to select the condition attribute, and then modeling data are discredited through selecting a proper precision to forms a decision table. Finally, the significant attributes and the key attribute values are extract from the decision table by using reduction algorithm based on variable precision, and are map pad into the fuzzy rules.It simplifies the fuzzy rules and therefore optimize the structure of neuro- fuzzy network effectively, reducing the training time of neural network greatly and improving the precision of training. This method has been applied to the modeling of non-linear time-delay system with a large number of sam-pling data, the validity and feasibility of this method is demonstrated by an example of modeling.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3