Numerical Computation of Complex Stress Intensity Factors of Interface Cracks in Bi-Materials Based on Photoelastic Theory

Author:

Li Peng Cheng1,Yang Bang Cheng1

Affiliation:

1. Kunming University of Science and Technology

Abstract

This paper presents a new numerical method for obtaining the complex stress intensity factor with an interface crack in bi-materials using photoelastic isochromatic fringe numbers N. The theoretical solution of stress field at the crack tip was deduced from Muskhelishvilis stress function and an undetermined term σ0 which is a function of material properties was added to this theoretical solution. A partial differential iterative equation with fast convergence was formed by applying the photoelastic theory. The complex stress intensity factor K=K1+iK2 and σ0 were obtained by Newton-Raphson iteration method and K domain was discussed. The simulant photoelastic isochromatic fringe pattern could be generated through image processing and numerical calculation according to K and σ0. The simulant isochromatic fringe pattern accords with experimental photoelastic isochromatic fringe pattern, so it is practicable for this numerical method of obtaining the complex stress intensity factor.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3