Investigation of Die Wear during Fine-Blanking Process of a Kind of Automobile Synchronizer Slipper by FEM and Experiments

Author:

Yin Fei1,Mao Hua Jie1,Hua Lin1,Gu Zhi Qiang1

Affiliation:

1. Wuhan University of Technology

Abstract

In this paper, die wear during fine-blanking process of a kind of automobile synchronizer slipper was investigated based on Finite Element Method (FEM) and experiments. The Finite Element (FE) model to simulate the fine-blanking process of the automobile synchronizer slipper was established on the DEFORM-3D software platform, and Archard's wear model was employed to calculate die wear during the process. Meanwhile, mesh refinement and automatic remeshing technique were used during meshing process of the blanked materials and bottom die in order to achieve high accuracy results of FE simulations and improve the computational efficiency. Simulation results have been verified and show good agreement with the real manufacture. In addition, relationships between die wear and the process parameters during fine-blanking process such as pressure pad force, ejector force, blanking speed, blanking clearance, fillet radius of bottom die as well as hardness of bottom die were investigated, respectively via FEM. The simulation results indicate that die wear is in proportion to the pressure pad force, ejector force, blanking speed and fillet radius of bottom die, while in inverse proportion to the blanking clearance and hardness of bottom die, which will provide a reliable reference for the real manufacture and engineering application.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3