Development of Low Size Dispersion, High Volume Fraction and Strong Quantum Confined CdSxSe1-x Quantum Dots Embedded in Borosilicate Glass Matrix and Study of their Optical Properties

Author:

Verma A.1,Bhatnagar P.K.1,Mathur P.C.1,Nagpal S.2,Pandey P.K.1,Kumar J.1

Affiliation:

1. University of Delhi South Campus

2. University of Delhi

Abstract

Quantum Dots (QDs) of CdSxSe1-x embedded in borosilicate glass matrix (BGM) have been grown using colored glass filter (RG695). Double-Step (DS) annealing method was adopted in which nucleation is achieved at a lower temperature (475°C) without any crystallization. To obtain crystallization on these nucleation centers, the annealing temperature is raised to 575°C at which the nucleation rate is negligible. QDs of various average radii and volume fractions are grown by varying the annealing duration from 3 to 11hrs. QDs corresponding to higher annealing duration are found to have low size dispersion (SD) and high volume fraction but weak quantum confinement, while, the QDs corresponding to lower annealing durations have high quantum confinement due to their much lower radii as compare to Bohr exciton radius, their SD is high and volume fraction low. For nonlinear optical applications the SD must be low and volume fraction should be high. Attempt has been made to optimize the two parameters. Further it has been concluded that there is no contribution of the band edge recombination to the PL and the origin of the PL is due to shallow traps existing in the volume of the QDs. Studies of absorption and PL have also been made on the samples aged for 18, 24 and 36 months. It is found that the effect of aging is to increase the absorption coefficient, reduce the shallow trap centers and reduce the SD.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3