Effect of Aqueous Milling on the Total Carbon Content of Hard Metal Powders

Author:

Chicinaş Horea Florin1,Jucan Darius Ovidiu1,Contiu Glad1,Popa Cătălin1

Affiliation:

1. Technical University of Cluj-Napoca

Abstract

Materials consisting of a hard phase, usually WC, and a tough binder, traditionally Co, form the most successful class of composite materials, also known as Hard Metals (HM) or Cemented Carbides. Powder metallurgy routes are employed generally for the production of such [1]. The typical processing route of such materials involves mixing the components, kneading and consolidation. Alcohols, alkanes and alkenes are commonly used to limit any excessive heating and oxidation of powders during mixing the components. In this study, we report the results of milling in a more environmentally friendly aqueous milling media. The obtained results are presented comparatively with milling under a traditional media, such as isohexane and acetone. The characterization of the milled samples has been done from the structural, compositional and morphological point of view. Considering our previous results, an important aspect of the milled powder is the carbon content, which dictates the sintering behavior of such parts. The carbon balance investigation performed on a carbon analyzer has revealed no significant differences upon changing the milling media. This work emphasizes the influence of the milling media on the HM powder. HM powders with similar properties have been obtained both by traditional and aqueous milling. The comparative study has revealed that the substitution of the traditional milling media does not influence the carbon content in the HM powder.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3