Optimisation of Steam Assisted Gravity Drainage [SAGD] for Improved Recovery from Unconsolidated Heavy Oil Reservoirs

Author:

Oyeneyin Babs Mufutau1,Bali Amol1,Adom Ebenezer1

Affiliation:

1. The Robert Gordon University

Abstract

Most of the heavy oil resources in the world are in sandstone reservoir rocks, the majority of which are unconsolidated sands which presents unique challenges for effective sand management. Because they are viscous and have less mobility, then appropriate recovery mechanisms that lower the viscosity to the point where it can readily flow into the wellbore and to the surface are required. There are many cold and thermal recovery methods assisted by gravity drainage being employed by the oil industry. These are customised for specific reservoir characteristics with associated sand production and management problems. Steam Assisted Gravity Drainage (SAGD) based on horizontal wells and gravity drainage, is becoming very popular in the heavy oil industry as a thermal viscosity reduction technique. SAGD has the potential to generate a heavy oil recovery factor of up to 65% but there are challenges to ‘’realising the limit’’. The process requires elaborate planning and is influenced by a combination of factors. This paper presents unique models being developed to address the issue of multiphase steam-condensed water-heavy oil modelling. It addresses the effects of transient issues such as the changing pore size distribution due to compaction on the bulk and shear viscosities of the non-Newtonian heavy oil and the impact on the reservoir productivity, thermal capacity of the heavy oil, toe-to-heel steam injection rate and quality for horizontal well applications. Specific case studies are presented to illustrate how the models can be used for detailed risk assessment for SAGD design and real-time process optimisation necessary to maximise production at minimum drawdown. Nomenclature

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3