Effect of Temperature and Frequency on Dynamic Mechanical Properties of Poly(Methyl Methacrylate)

Author:

Zhao Rong Guo1,Li Hong Chao1,Chen Chao Zhong1,Luo Xi Yan2,Li Xiu Juan3,Tan Dun Hou1,Li Jun Fei1

Affiliation:

1. Xiangtan University

2. Chongqing University

3. Air Force Aviation University

Abstract

The temperature sweep tests at defferent frequencies and heating rates, and frequency sweep tests at various temperatures for the samples of poly(methyl methacrylate) are carried out on a dynamic mechanical thermal spectrometer EPLEXOR® 500N-Gabo. The effects of temperature, frequency and heating rate on dynamic mechanical properties of poly(methyl methacrylate) are investigated. The results indicate that the glass transition temperature of poly(methyl methacrylate) increases with increasing frequency from 1 to 100Hz, and increases with increasing heating rate from 3 to 8°C/min as well. The temperature sweep curves at various heating rates suggest that the storage modulus of poly(methyl methacrylate) is non-sensitive at heating rate 3°C/min or 8°C/min, while heating rate is 5°C/min, there exists a critical temperature, within which the storage modulus versus temperature curves depart from each other, and beyond which the curves overlap one another. The glass transition temperature determined by the peak of loss modulus curve is smaller than that defined by the peak of loss tangent. The frequency sweep curves at a constant temperature show that a drop in storage modulus and a peak in loss tangent appear at a certain critical frequency, and the critical frequency increases with increasing temperature. For amorphous polymer, a competitive mechanism between frequency and temperature is observed. Higher temperature accelerates molecular motion, while higher frequency restrains molecular motion, so that the critical frequency corresponding to the peak of loss tangent shifts toward the direction of high temperature.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3