Effect of ZnO Nano-Oxide Addition on the Superconducting Properties of the (Bi.Pb)2223 Phase

Author:

Mawassi R.1,Awad R.2,Roumie Mohamad3,Kork M.1,Hassan I.2

Affiliation:

1. Beirut Arab University

2. Alexandria University

3. Lebanese Atomic Energy Commission

Abstract

The major limitation of Bi-system superconductor applications is the intergrain weak links and weak flux pinning capability producing low critical current density of the Bibased phases. In order to enhance these characteristics and other superconducting properties, effective flux pinning centers are introduced into high temperature superconductors. In this work, different weight percentages of ZnO nano oxide were introduced at the final stage of the Bi1.8Pb0.4Sr2Ca2Cu3O10-y superconductor preparation process. Phase characterization was completed by X-ray diffraction (XRD). Exact constitution of the samples was determined using particle induced X-ray emission (PIXE). Granular and microstructure were investigated using scanning electron microscopy (SEM). Electrical resistivity as function of the temperature was carried to evaluate the relative performance of samples, and finally, E-J characteristic curves were obtained at 77K. Using 0.4 ZnO weight percentage, the electrical and granular properties were greatly enhanced, indicating more efficient pinning mechanisms. A critical current density of 949 A/cm2 was obtained which represents more than twice the value obtained for the pure sample (Jc= 445 A/cm2).

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3