High Quantum Efficiency Dependence on Structure Optimizatin for Gallium Nitride Photocathode

Author:

Fu Xiao Qian1,Wang Xiao Hui2,Yang Yong Fu2,Chang Ben Kang3

Affiliation:

1. University of Jinan

2. Nanjing University of Science and Technology

3. Science and Technology on Low-Light-Level Night Vision Laboratory

Abstract

We optimized the gallium nitride(GaN)photocathode’s structure in three aspects for higher quantum efficiency. AlN is used to replace GaN as the buffer layer, which can act as potential barrier to reflect electrons back to surface. The optimal thickness of emission layer is calculated as 162.5nm, and considering the graded doping profile, we optimized the thickness as 180nm. Three built-in electric fields are introduced by Mg graded doping, and the intensities of the high fields are calculated to give the quantitive results of their influence on quantum efficiency. After surface cleaning and activation, quantum efficiency of the optimized sample was greatly increased and the highest value of 56% was achieved at 5.20eV. More quantum efficiency enchancement is possible by further optimizing the photocathode structure.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3