Optimizing to Memory Application in Embedded Multimedia Device

Author:

Wang Xiao Sheng1,Yu Qian1

Affiliation:

1. Shandong Women’s University

Abstract

The modern embedded multimedia electronic devices rely on dynamically-allocated data structures to store and process their data, as a result, the demand of its memory capacity and dynamic are increasing unceasingly. In order to better solve the memory application optimization in embedded device, this paper represents multimedia application’s dynamic data structures optimization flow and improved or modified NSGA-II multi-objective evolutionary algorithm (MNSGA-II), and uses three objective functions: embedded device’s memory accesses, memory use and energy consumption. The MNSGA-II algorithm adopts repeat crowded distance sorting tactics to improve NSGA-II based on keeping the advantage of the original NSGA-II for multi-objective optimization problem. The experiment results show that MNSGA-II has better performance of the convergence and the diversity of solutions than original NSGA-II, and the optimal dynamic data structure implementation is successful by performing our method for one real embedded multimedia device’s memory application.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Reference11 articles.

1. K-S. Lee, Y.C. Park and D.H. Youn: IEEE Trans. On Consumer Electronics. Vol. 48(21) (2002), pp.671-676.

2. Z.B. Zhai, P. Liu, W. Zhang and D.C. Zheng: SIGNAL PROCESSING, Vol. 21(4A) (2005), pp.428-429.

3. B.S. Jhunwala: Electrical and Computer Conference, Canadian(2008), pp.699-702.

4. E.G. Daylight, D. Atienza, A. Vandecappelle, F. Catthoor and J.M. Mendias: IEEE Trans Very Large Scale Integr. (VLSI) Syst. Vol. 12 (3) (2004), pp.271-279.

5. D. Atienza, C. Baloukas, L. Papadopoulos, C. Poucet, S. Mamagkakis, J.I. Hidalgo, F. Catthoor, D. Soudris, J. Lanchares: In SCOPES '07 proceeding of the 10th international workshop on Software & compilers for embedded systems. ACM Press, New York(2007).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3