Numerical Simulation of the Heat and Mass Transfer in a Sodium Sulfur Cell

Author:

Li Zhi Gang1,Huai Xiu Lan1,Tang Da Wei1,Wen Zhao Yin1,Dong Zhao Yi2

Affiliation:

1. Chinese Academy of Sciences

2. Beijing Longyuan Cooling Technology Co. Ltd.

Abstract

A mathematical model is built for the heat and mass transfer during charge and discharge in a sodium sulfur cell by coupling the electrochemical equations with the equations of species transport and heat transfer. Numerical simulation is performed for the two-dimensional axisymmetric domain of a single cell. The simulated charge-discharge characteristics agree well with the experimental data of a 650 Ah Na/S cell. The transient non-uniform distributions of the electric potential, the current density, the sodium polysulfide composition and the temperature during charge and discharge are obtained. The results show that the non-uniform distribution of the sodium polysulfide composition and current density may deteriorate the degradation of the ceramic electrolyte and the corrosion of the metal container, thus may shorten the cell life. The graphite fibers in the sulfur electrode matrix are preferably radially oriented, which is advantageous for reducing the cell resistance, for improving the rechargeability and for extending the cell life. The simulation results of the transient temperature fields provide useful guidance for the optimized thermal design so as to enhance the energy efficiency of the battery system.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3