Vehicle Interior Low Frequency Noise Optimum Using Substructure Modal Synthesis Method

Author:

Wang Er Bing1,Zhou Hong1,Xu Hai Qing1,Zhang Fang1,Wang Jing1

Affiliation:

1. Tongji University

Abstract

Combined with the structural dynamic model of a car set up with the substructure modal synthesis method, body panels acoustic contribution was analyzed to reduce the in-car structural noise in low frequency range. The driver-right-ear position was selected as acoustic response point, with the operational vibration response of the dynamic model as boundary condition for acoustic BEM (boundary element model), the panels that attribute most to the in-car noise were located according to ATV (acoustic transfer vector) results. After the vibrational restraint of the crucial panels by corresponding experimental measurement, in idling, the most decrease of main peaks is 5.7dB; the overall level of in-car noise is reduced by 3.89dB. It indicates that the substructure mode synthesis method can provide proper suggestion for optimizing in-car structural noise.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3