Abstract
Cement manufacturing, which is partially responsible for environmental and health risks as well as the greenhouse gas emissions, is a binder industry that needs energy and raw material. To decrease the needing, this study develops nano-modified eco-friendly cementitious composites including industrial solid wastes and/or by-products. For this purpose, ordinary Portland cement (OPC) was partially replaced with 70 wt% of fly ash (FA), Nano metakaolin (NMK) was incorporated at a rate of 2, 4, 6, 8, 10, 12 and 14 % as partial replacement by weight of FA to take advantage of the great role of nano materials in improving the mechanical and physical properties of cement based materials. Compressive strength, flexural strength, and capillary water absorption coefficient have been studied at 28 days of curing according to the international ASTM standards. Differential scanning calorimeter (DSC) was used to study the phase composition/decomposition. The microstructure characteristics of the hardened samples were investigated by scanning electron microscope (SEM) equipped with energy dispersive analytical x-ray unit (EDAX). The results revealed that the partial replacement of cement by 70% of FA has reduced both compressive and flexural strengths by about 45% in addition; the water absorption has been increased by about 175% as compared to the OPC. The replacement of FA by different amounts of NMK compensate for the loss in strength by about 75%. Furthermore, NMK has considerably improved the microstructure and reduced the water absorption by 86%. The study concluded that, it is possible to substitute 70% of the weight of the cement in the production of eco-friendly cementitious composites with improved mechanical performance attaining 88% of the corresponding performance of the hydrated OPC. The developed composites can be considered as green binders and recommended for various applications in construction industry.
Publisher
Trans Tech Publications, Ltd.
Subject
General Chemical Engineering
Reference41 articles.
1. Benhelal E et al (2013) Global strategies and potentials to curb CO2 emissions in cement industry. J Clean Prod 51:142–161.
2. Scrivener, K.L., Nonat, A., 2011. Hydration of cementitious materials, present and future. Cem. Concr. Res. 41 (7), 651–665.
3. Kırgız, M.S., Pulverized Fuel Ash Cement Activated by Nanographite,, ACI Materials, Vol. 115, No. 6, p.803–812, (2018).
4. Kırgız, M.S., Green cement composite concept reinforced by graphite nano-engineered particle suspension for infrastructure renewal material, Composites Part B, Vol. 154, No. 12, p.423–429, 2018.
5. Kırgız, M.S., Effect of mineralogical substitution raw material mixing ratio on mechanical properties of concrete, ZKG International, No. 10, p.30–41, (2018).
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献