HBsAg Production in Methanol Controlled P. pastoris GS115 MutS Bioreactor Process

Author:

Grigs Oskars1,Bolmanis Emīls1,Kazaks Andris2

Affiliation:

1. Latvian State Institute of Wood Chemistry

2. Latvian Biomedical Research and Study Centre

Abstract

When producing recombinant proteins with Pichia pastoris, cultivation parameters, such as induction temperature, dissolved oxygen level and residual methanol concentration play a crucial role in product biosynthesis and subsequent purification, therefore to maximize protein yields, the optimization of these parameters is imperative. Two different Pichia pastoris cultivation strategies for HBsAg VLP production in a 5 L stirred-tank bioreactor and the influence of different cultivation parameters on product yield were investigated. Residual methanol concentrations were controlled at low (>0.01 g/L), medium (1.5-2.0 g/L) and high (5.0-6.0 g/L) levels using a PI-based feed rate control algorithm based on the online methanol sensor signal. Product was purified using a novel and rapid purification method including steps of ammonium sulfate precipitation, size-exclusion chromatography and hydrophobic interaction chromatography. Employing an in-situ methanol sensor probe, the PI-based methanol feed rate control algorithm provided residual methanol concentration control with an average deviation of ±0.4 g/L from set-point value. Employing a cultivation protocol with an increased methanol concentration controlled at 6.0 g/L and a reduced DO level below 10 %, resulting in a final dry cell biomass concentration of 140 g/L and purified HBsAg VLPs yield of 186 mg/L. Developed purification method proved advantageous to other described methods, as it did not include time consuming extraction and centrifugation steps.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3