How Efficient are LC3 and GGBFS-Contained Mortar Mixtures Submerged into Na2SO4 Solution against External Sulfate Attack at an early Age?

Author:

Orynbassarov Islam1,Shon Chang Seon1,Kim Jong Ryeol1,Bektimirova Umut1,Tugelbayev Aidyn1

Affiliation:

1. Nazarbayev University

Abstract

Ordinary Portland cement (OPC) is one of the most widely used construction materials in civil engineering infrastructure construction but it is susceptible to sulfate attack. One of the ways to improve the sulfate resistance of an OPC mortar/concrete is to replace a certain amount of OPC with different pozzolanic materials such as ground granulated blast furnace slag (GGBFS) and metakaolin. The use of pozzolanic materials to mortar/concrete not only enhances durability but also reduces carbon dioxide (CO2) emission due to the less usage of OPC at the initial construction state. As considering these aspects, limestone calcined clay cement (LC3) has been developed in recent decades. However, the influence of LC3 on sulfate attack resistance has not been fully evaluated. Therefore, this study investigated the efficiency of LC3 mortar mixtures against sulfate attack at an early age (approximately 4.5 months) after two different curing periods, namely 1-day and 3-day curing, since the strength of the LC3 mixture is lower than OPC mixtures. To evaluate the synergistic effect of a combination of LC3 and GGBFS on the sulfate resistance, the LC3 and OPC mixtures containing 25% GGBFS were also assessed in terms of density, porosity, compressive strength, volumetric expansion, and weight changes. The experiment results show that the expansion of the LC3 mixture regardless of the addition of GGBFS and an initial curing strength made a plateau after a rapid increase up to 7 days, while the expansion of the OPC mixture kept increasing throughout the period. Furthermore, the addition of GGBFS to OPC or LC3 mixture provides the synergistic effect on reducing the expansion due to sulfate attack. Therefore, if LC3 mixture has high initial strength (min. 15 MPa) and dense microstructure to minimize the penetration of sulfate ion into the mixture, it is expected that LC3 mixture is more efficient than OPC mixture against the sulfate attack.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3