Affiliation:
1. Beijing Institute of Technology
2. Beijing Institute of Technology (BIT)
Abstract
In recent years, photoelectric performances of many low-dimensional metal halide hybrid materials have been researched and utilized in the domain of phosphors, light emitting diodes (LEDs) and photoelectric detection etc. Nevertheless, unlike two-dimensional (2D) ones, one-dimensional (1D) hybrids received less attention to study their structures and optical properties. Herein, we deal with luminous performance and photoluminescence mechanism for an original 1D organic-inorganic lead chloride hybrid C5H14N3PbCl3 which is abbreviated as TMGPbCl3 (TMG+ = 1, 1, 3, 3-tetramethyguanidine cation). According to photoluminescence spectra, its broadband white-light luminescence are dual emissions from organic component TMG+ peaked at 429 nm and self-trapped excitons (STEs) of inorganic metal halide octahedra peaked at 510 nm, respectively and this property make it to be a promising white-light phosphor.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science