Experimental and Numerical Examination on Formability and Microstructure of AA3003-H18 Alloy in Single Point Incremental Forming Process

Author:

Murugesan Mohanraj1,Bhandari Krishna Singh1,Hahn Jae Hag1,Jung Dong Won1

Affiliation:

1. Jeju National University

Abstract

The single-point incremental forming process has witnessed significant advantages in automobiles, aerospace, and medical applications in recent years because of its flexibility in manufacturing complex shapes. In detail, the components are produced only using the toolpath, which is guided by computer-aided manufacturing software. However, during the forming process, the parts might experience fractures, which could heavily impact the formed part's geometric accuracy. The main purpose of this study is to analyze the formability of an AA3003-H18 aluminum alloy material in the SPIF process; for this purpose, the material properties are extracted from the experimental simple tensile test in three directions corresponding to the material rolling direction. At first, a simple tensile test is modeled and estimated the material properties for conducting the numerical simulations. Second, the real-time experiments of the SPIF process in terms of predefined forming conditions are performed, and then the surface roughness was measured to check the surface quality of the formed parts. Then, the formed parts are scanned using a 3D ATOS scanner and compared against the desired computer-aided design (CAD) model. Eventually, the numerical results are discussed in comparison with the experimental outcome and displayed a significant correlation toward the expected results. This results comparison communicates that the introduced finite element (FE) model can be adopted for investigating the appearance of thinning location, thinning reduction, distributions of stress and strain. The overall results show that satisfying material formability in better surface finish and geometric dimensional accuracy can be accomplished when the forming conditions are designed appropriately.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3