Affiliation:
1. University Djilali Liabès of Sidi-Bel-Abbes
2. Université des Sciences et de la technologie d’Oran Mohamed Boudiaf
Abstract
Drilling is a chip machining process widely used in manufacturing .The term drilling includes all methods for making cylindrical holes in a work piece with chip cutting tools. There are many applications where drilling is used, such as drilling holes in PCBs. Robotic systems are used today to perform the drilling process. A problem that affects the use of these systems is the drilling sequence, as there are usually a number of points to visit. The determination of the drilling sequence is similar to the problem of synchronization of movement and travel time. The main objective is to optimize the time and trajectory of the three axes robot equipped with an automatic drill that seeks the best performance. In this paper, we have built a genetic optimization and problem solving algorithms to shorten the machining time to drill a given group of holes and reduce machining costs in order to improve the efficiency of the machining process as well robotic machining with three axes without degradation of the precision of the movement. The results of the experiments show that the proposed approach is feasible and practical. It is particularly useful in planning and scheduling systems for real-time manufacturing processes.
Publisher
Trans Tech Publications, Ltd.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献