Influence of Nickel Powder Particle Size on the Microstructure and Densification of Spark Plasma Sintered Nickel-Based Superalloy

Author:

Ogunbiyi Olugbenga1,Jamiru Tamba1,Sadiku Rotimi1,Adesina Oluwagbenga1,Adesina Olanrewaju Seun2,Olorundaisi Emmanuel1

Affiliation:

1. Tshwane University of Technology

2. Landmark University

Abstract

This study aims to investigate the effects of powder particle size on the densification and microhardness properties of spark plasma sintered superalloy. Three particles size ranges of nickel were used in this study, namely, (3-44, 45-106 and 106-150 μm), and this is the matrix in the IN738LC superalloy composition (powder), used in the study. The effects of the particle size were examined at a specific applied temperature and pressure. The transitioning stages during the sintering process of the green powders to the formation of the sintered alloy were analyzed and given as the particle rearrangement stage, the localized deformation stage and the neck formation/grain growth stage. There was the formation of γ, γ' and a solid solution within the microstructure of the sintered alloys. The effect of particle size was more pronounced on the grain sizes obtained, while the phases formed is the same for the three alloys. The results indicate that the nickel particle size (>60% of the total composition) has a significant influence on the densification, porosity, grain size and hardness properties of the IN738LC sintered alloy. Finer nickel particle size resulted in a sintered product with smaller grain size (9 µm), reduced percentage porosity (3.9%), increased relative density (96.1%) and increased hardness properties (371 Hv).

Publisher

Trans Tech Publications, Ltd.

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3