Experimental Investigation on the Microstructural Properties of Black Cotton Soil Stabilized with Cinder (Scoria) Fines and Class-C Fly Ash

Author:

Ayehutsega Biruk1,Assefa Eleyas1,Sachpazis Costas2

Affiliation:

1. Addis Ababa Science and Technology University

2. University of Western Macedonia

Abstract

Black cotton soil is one of the significant problematic soil for any civil or geotechnical engineering application in the whole world. In the past several decades, different experimental studies have been carried out on the stabilization of expansive soil and different types of stabilizers like lime, Portland cement, cement fly ash, and lime fly ash were used and applied in highway and others construction. However, those traditional stabilizers are not environmentally friendly thus further scientific study is needed to minimize the percentage of carbon-based stabilizers. The fact that Ethiopia encountered major engineering problems due to these problematic soils many researchers have been conducted a vital study using traditional stabilizers for several years however there is no significant study on the microstructural properties of stabilized black cotton soil. In this study, a scoria fines and class c fly ash are used at different blended groups, for each group, the stabilizer content ranges from 10 to 30%. The liquid limit and plasticity index of the soil has been decreased with the increasing content of class c fly ash (FA) and cinder fines (CF). Especially after the soil treated with 25% of class c fly ash and 25% of cinder fines, the liquid limit has decreased by 51.61% and, the plasticity index by 78.61%, linear shrinkage by 66.58%, and the free swell index decreased by 78.9%. The CBR and UCS value has increased by 86.2% and 83.9%, respectively, and CBR swell reduced by 61.2% with increasing stabilizer content. The microstructural properties of Raw black cotton soil and samples that are selected based on strength and index properties (BCS+FA3, BCS+CF3, BCS+CF+FA3) were observed by Scanning electron microscopy (SEM) imagining device, and the result clearly shows the alteration in fabric and morphology of the sample. After treatment with class c fly ash and cinder fines, the laminated configuration of black cotton soil has changed to more flocculated and coherent mass. Also, the SEM image proves that cinder fines impart a mechanical bonding that forms well-developed floccules and a more porous nature. These types of particle arrangement and clay aggregation bring the improvement in index and strength properties.

Publisher

Trans Tech Publications, Ltd.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3